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This paper describes a two-dimensional (2D) upwind residual distribution or fluc-
tuation splitting (FS) scheme (MHD-A) for the numerical solutions of planar magne-
tohydrodynamics (MHD) equations on structured or unstructured triangular meshes.
The scheme is second order in space and time, and utilizes a consistent 2D wave
model originating from the eigensystem of a 2D jacobian matrix of the MHD flux
vector. The possible waves existing in this wave model are entropy, magnetoacous-
tic, and (numerical) magnetic monopole waves; however, Alfven waves do not exist
since the problem is planar.

One of the important features of the method is that the mesh structure has no influ-
ence on propagation directions of the waves. These directions are dependent only on
flow properties and field gradients (for example, it is shown that the magnetoacoustic
waves propagate in the directions of maximum and minimum magnetic strain rates).
The other feature is that no flux evaluations and no information from the neighboring
cells are needed to obtain a second order, positive, and linearity preserving scheme.

A variety of numerical tests carried out by the model on structured and unstruc-
tured triangular meshes show that MHD-A produces rather encouraging numerical
results even though it is the first FS wave model ever developed for multidimensional
MHD. c© 1999 Academic Press

1. INTRODUCTION

Conservative, finite difference and finite volume schemes based on higher order Godunov
methods have been effectively used to compute the solutions of hyperbolic systems of con-
servative laws [2–5]. Recently, Brio and Wu [6], Zachary and Colella [7], and Dai and
Woodward [8] contributed to the early development of such upwind schemes to solve the
magnetohydrodynamics (MHD) equations. Finite volume-type solvers were developed in
two dimensions (2D) by Aslan [9–13], by Zacharyet al. [7], by Powellet al. [14, 15], by
Tanaka [36], by Roeet al. [16], and recently by Ryuet al. [17] and by Falleet al. [34].
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Most of these schemes were based on evaluating the numerical fluxes across the boundaries
between cells as a function of left and right states. This paper deals with an alternative
numerical method called the fluctuation splitting (FS) scheme and presents, for MHD, a
multidimensional FS wave model first introduced by Aslan [18]. The model presented here
includes a pair of fast and slow magnetoacoustic waves, an entropy (contact) wave, and
a recently introduced [1] magnetic monopole wave to reduce the numerical problems due
to the divergence condition (i.e.,E∇ · B = 0). This is an auxiliary condition introduced by
Maxwell’s equations, and a consistent and convergent discretization of the MHD equations
is dependent on how it is satisfied numerically. A local nonzero divergence of magnetic
field indicates the existence of magnetic monopoles within the cell, which suggests non-
conservation of the magnetic flux across its surface. If no action is taken, this error grows
during the computations, causing an artificial force parallel to the magnetic field (through
the momentum equation), and destroys the correct dynamics of the flow [19].

One way to handle the nonphysical consequences of nonzero divergence is to employ
a nonconservative form of MHD equations, as done by Brackbill and Barnes [19]. This
method is unsatisfactory for flows containing strong shocks and discontinuities. Another
way is to solve a Poisson equation for a scalar potential and correct the magnetic field
with it to eliminate the spurious forces along the magnetic field (see Hujeirat [35] and
references therein). This method is quite expensive and introduces difficulties during the
differentiation of the scalar potential to correct the magnetic field. Furthermore, it was
shown by Tanaka [36] that for some cases, an artificial divergence wave should be used
along with the Poisson equation to obtain stabilization. Another way is to use stagerred grid
approach in which the scalar quantities are placed at the center while the vector fields are
considered at the cell edges (see Evans and Hawley [32]) in order to consistently discretize
Faraday’s law to eliminate the commutation error of the divergence and curl operators.
The improvement obtained with this method (comparing with others) is that the maximum
divergence constraint error reduces and remains constant at a lower value during the time
evolution.

For the conservative form of MHD equations, the possibility of eliminating such numer-
ical problems by means of a numerical magnetic monopole wave was first suggested by
Aslan [1]. Although no numerical results were presented, Aslan observed that the slight
modification of Faraday’s law did not change the MHD wave structure but introduced a
new divergence wave in the eigensystem as well as a monopole current source (i.e.,V E∇ ·B)
in Faraday’s law (see also Aslanet al. [9, 10]). Why a divergence source should be intro-
duced into Faraday’s law to compensate the nonphysical motions of numerical magnetic
monopoles (arising from the discretization errors in the magnetic field) can be explained by
carefully analysing Maxwell’s equations for the electric field within moving and station-
ary frames (for details see the book by Jackson [20, Section. 6.1]). It is straighforward to
show that using Ampere’s law in conservative momentum equation also introduces a source
related toB E∇ · B. Unless this source is identically zero, a spurious Lorentz force in the
direction of magnetic field [19] will be created.

After Aslan introduced the idea of employing such a divergence source and nonopole
wave in 1993, Powell [14] and Gombosiet al.[15] applied this idea to the solution of multi-
dimensional MHD equations in 1994. Aslan’s idea worked rather well, mostly eliminating
the discretization errors due to the nonzero divergence of the magnetic field. After observing
that his idea was working as well as that of Evans and Hawley [32], Aslanet al. [9] then
succesfully employed the numerical magnetic monopole wave within a Riemann solver
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(on quadrilateral grids) for the simulation of Tokamak-type plasmas, high beta (i.e., kinetic
pressure>magnetic pressure) explosions, and subsonic and supersonic flows [9, 13]. Nu-
merical results showed that this finite volume method produced impressive results for com-
pressible flows, although it caused bifurcations and spurious oscillations for subsonic flows.
The spurious oscillations produced by the wave models used in FS schemes for subsonic
Eulerian flows were extensively discussed by Mesaros [21], who employed a hyperbolic–
elliptic splitting scheme. Currently, the extension of this scheme for the subsonic MHD
equations is being investigated by the author.

It is important to understand that the FS scheme presented here utilizes no fluxes since
the modified jacobian matrices are not jacobian of any flux; thus, the present method differs
from that developed by Powell [14], who utilized the fluxes and divergence source explicitly.
Although the present method is developed to account for a divergence source, numerical
results showed that the source has only a minor effect and it can be neglected. The good
feature of the FS scheme presented here is that for all the test problems, solved on structured
or even highly distorted unstructured meshes, the divergence error reduces with iterations.
However, it will be shown by numerical tests that the divergence error reduces slowly as
the meshes are made finer, a phenomenon which requires further investigation.

Although some investigators are against the idea of the eight-wave formulation, its success
cannot be underestimated. It is expected that the recent increase in the development of
such schemes (whether they use eight-wave formulation or not) for the solutions of MHD
equations in all flow regimes will lead to more accurate investigation of the fusion plasma
dynamics and play an important role in alternative energy production in the future.

In the next section, the idea of multidimensional FS schemes originally developed by Roe
[10] will be described in detail. This section will include the description of the FS scheme
for scalar advection. Then, how this scheme can be extended to the system of equations
by means of a wave model will be discussed in detail. Section 3 will then describe the
FS wave model, MHD-A, for the planar MHD equations. The numerical results obtained
on structured and unstructured meshes for the scalar advection and planar MHD equations
will be given in Section 4. Finally, the conclusion and a look at future work will follow in
Section 5.

2. THE FLUCTUATION SPLITTING AND WAVE MODELS

In order to understand how a fluctuation splitting scheme can be employed for numerical
solutions of a system of hyperbolic equations, it is important to get acquainted with the
details of the scheme for scalar convection since the system is linearized and solved by
means of simple waves advecting independently.

2.1. Scalar Convection

The fluctuation splitting scheme was first proposed by Roe [23] for the numerical solution
of linear convection equation

ut + Eλ · E∇u = 0, (1)

whereEλ= (a, b) is a constant vector. In the work presented here, the source effects are also
considered so that the right side of the above equation is replaced by the source (S). In
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FIG. 1. (a) A triangular mesh with inward normals; (b) median dual cell area that weights nodei ; (c, d) upwind
fluctuation distribution due to wave direction; (e) discontinuity capturing property of the scheme.

the FS scheme, the solution domain (Ä) including a total ofNT nodes is triangulated (see
Fig. 1b), and the physical quantities stored at the vertices are approximated by a continuous
piecewise linear function

u(Ex, t) =
NT∑
i

Ni (Ex)ui (t), (2)

where, in finite element (FE) methods,N is called the nodal basis function which has the
propertyN`(Exk) = δk,l whereδk,l is the Kronecker delta function. Multiplying Eq. (1) by a
weight functionw`(Ex) and integrating over the solution domain (Ä) one gets the following
equation for nodè:

∫ ∫
Ä

(
w`

∂

∂t

NT∑
k=1

Nkuk

)
dÄ+

∫ ∫
Ä

(
w`Eλ ·

NT∑
k=1

E∇Nkuk

)
dÄ =

∫ ∫
Ä

(w`S) dÄ. (3)

Note that if the weight functions are identical toN`, the classical Galerkin FE method is
obtained. Usually the global system (3) is built as a sum over the triangles,T ,

∑
T

{∫ ∫
Ä

w`

3∑
k=1

Nk
∂uk

∂t
dST +

∫ ∫
ST

w`λi

3∑
k=1

∂Nk

∂xi
uk dST =

∫ ∫
Ä

w`S dST

}
, (4)

whereST is the area of triangleT and the sum inside every triangle runs from 1 to 3. For a
linearly varyingu on the triangle it can be verified that

∂Nk

∂xi
= nk,i

2ST
,

∂u

∂xi
= 1

2ST

3∑
k=1

nk,i uk, (5)

where nk,i is the component ofEnk in the xi direction (i.e., inward normals shown in
Fig. 1a). Using Eq. (5), the second integral in Eq. (4)—from now on called fluctuation,
8T
` —simplifies to

8T
` =

∑
T

∫ ∫
ST

w`λi

3∑
k=1

nk,i

2ST
uk dST =

(
1

ST

∑
T

∫ ∫
ST

w` dST

)
8T = βT

` 8T , (6)

whereβT
` are called distribution coefficents (satisfyingβT

1 + βT
2 + βT

3 = 1) since they
distribute parts of the fluctuation (cell residual) to the three nodes of triangleT . The cell
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fluctuation is then defined as

8T = 1

2

3∑
p=1

λi np,i up =
3∑

p=1

kpup, (7)

since, from geometry,En1+ En2+ En3 = 0 (and hencek1+ k2+ k3 = 0) and it can be shown
that8T can also be written as

8T = k2(u2− u1)+ k3(u3− u1), (8)

leading to a form which will be used later. The first integral in Eq. (4) leads to the product
of ∂uk/∂t and the so-called mass matrixM whose elements are defined as

M`,k =
∑

T

∫ ∫
ST

w`Nk dST . (9)

In the FE method it was found that takingw` = N` (different from that in the spatial part)
one gets the most stable Galerkin mass matrix for nodek given by

M`,k =
∑

T

∫ ∫
ST

N`Nk dST =
∑
T∈Ä`

ST

3
δl ,k = S̀ δl ,k, (10)

whereS̀ is now the area of the median dual cell of node` (see Fig. 1b). The third integral
Eq. (4) can be written as

∑
T

∫ ∫
ST

w`S dST = ŜT , (11)

where usually the source is split equally over the nodes of triangleT . Combining Eqs. (6),
(9), (10) results in

S̀
du`
dt
+
∑

T

βT
` 8T = ŜT . (12)

The Galerkin FE scheme is obtained by choosingw`= N` in Eq. (3). In this case, the
distribution coefficents turn intoβGAL

` = 1
3, leading to a method which is unstable for pure

convection. For stability, an artificial dissipation term must be added, as is done in the
Lax–Wendroff scheme, which leads to

βLW
` =

1

3
+ 1t

2ST
k`. (13)

See [24] for different forms of the distribution function.
When a system of equations is considered,βT

` turn into matrices which should also satisfy∑
m β

T
m = I for consistency. In this case, the fluctation vector for system becomes

8T =
3∑

i=1

Ki Ui , (14)
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whereU is the state vector andKi are the jacobians based on edge normals, i.e.,

Ki = 1

2
(Aunx,i + Buny,i ) = 1

2
Ri3i Li , (15)

whereR, L, and3 are associated eigenvector and eigenvalue matrices. In the FS scheme,
either such matrices are directly used for distribution or the distribution is done by means
of a consistent wave model. The second approach is considered is this paper.

The flow parameter,k`, distinguishes the inflow/outflow faces as well as the upstream/
downstream nodes. For the system of equations, each wave of the associated eigensystem
will have a different flow parameter and contribute to the total fluctuation in an upwind
manner. Whenki is positive, the flow entersT throughEi , andi is the downstream node
(while j andk are upstream nodes); otherwise,Ei is an outflow face andi is the upstream
node. Note that because

∑
k`= 0, either one or two ofk` must be negative. This fact leads to

the development of different upwinding strategies using the sign ofk` (i.e., see Figs. 1c and
1d for two- and one-node updates, respectively). For instance, defining a smart parameter
σ ∗ = |σ1+ σ2σ3|/2, whereσ` is the sign ofk`, one can distinguish one- and two-node
updates. Whenσ ∗ = 0, it is a one-node update and the upwinding strategy requires that
8T should be assigned only to the upwind node,i ≡ 2+ (σ3 − σ1)/2 (i.e.,βi = 1, β j =
βk= 0); otherwise, it is a two-node update case (i.e.,σ ∗ = 1) and8T is distributed between
the nodes,j ≡ 2+ (σ3− σ2)/2 andk ≡ 2+ (σ2−σ1)/2 with different distribution weights
β j andβk. Although, this procedure was developed by the author and it minimizes the
number of “if” statements in coding, there exist different distribution schemes (see Paillere
et al. [24] for a detailed review).

The discretized form of Eq. (12) leads to the following explicit local update, for eachT
which is not in equilibrium (i.e., has a finite fluctation):

un+1
` = un

` −
1t

S̀

∑
T

[
βT
`

3∑
j=1

kj u
n
j −

1

3
Ŝn

T

]
; (16)

here1t is the time step andn+ 1 is the new time level. Notice that the average source is
distributed equally to the nodes ofT .

2.2. Properties of FS Scheme

The FS scheme is said to be locallypositive (P) and hence nonoscillatory (i.e., the
occurence of numerical oscillations which appears close to large changes in the solution
is prohibited) when the new iterateun+1

` is written as the convex average of old iterates as
[21]

un+1
` =

∑
k

Ckun
k, (17)

with Ck≥ 0 for all k (
∑

Ck= 1 for consistency). To show how this can be established in
FS schemes, consider the one-node update and assume that node 1 is the downstream node.
In this case,k2, k3≤ 0 andk1≥ 0 by definition, and the total fluctuation is to be assigned to
node 1 only (β2, β3= 0 andβ1= 1, see Fig. 1c). In this case, the updates for all three nodes
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of T can be written as

S1u1← S1u1−1t

[
k1u1+ k2u2+ k3u3− ŜT

3

]
; Sj u j ← Sj u j +1t

ŜT

3
, j = 2, 3

(18)

so that positivity is achieved forC1= S1− k11t ≥ 0 or1t ≤ S1/k1, a condition that leads
to the time step limitation. Note that, in the case of a system of equations,k` becomes the
flow parameter of thèth eigenvalue, and(u2− u1) and(u3− u1) given in Eq. (8) turn into
the gradients which are projected onto the associated eigenvector.

The FS scheme is said to belinearity preserving(LP) if the numerical scheme can
reproduce steady linear solutions of Eq. (1) exactly. This property requires that, in the time
evolution,8T→ 0 as the equilibrium is established inT so that no further update is sent
to its nodes. Although, this is trivially satisfied for the one-node update, the design of LP
schemes for the two-node updates leads to complications sinceβT

` should be designed as
bounded. AnN-scheme is a positive scheme with the lowest cross diffusion of its class
and is closely related to the FE method developed by Hugheset al. [25]. In this scheme,
for the two-node update case, the advection speed is written as the sum of components
parallel to the edges ofT across the downstream nodes (for instance, Fig. 1d shows that
the downstream nodes are 2 and 3). The straightforward algebra shows that the fluctuations
assigned to these nodes should be given by82= k2(u2 − u1) and83= k3(u3 − u1) (i.e.,
the parts of Eq. (8)) for upwinding and the condition1t ≤min(S2/k2, S3/k3) should be
satisfied for local positivity. In order to increase the spatial accuracy of this scheme to
second order, the formulation presented by Sidilkover [26] can be used. In this formulation,
recall that the N scheme leads to the two-node updates

S1u1← S1u1+1t

[
ŜT

3

]
; Sj u j ← Sj u j −1t

[
kj (u j − u1)− ŜT

3

]
, j = 2, 3 (19)

and introduce a limiter function (9) as a function of the ratio of two fluctuations,Q =
−83/82. Then transfer the limited contribution9(Q)82 from u2 to u3 to increase the
spatial accuracy of the scheme to second order without any requirement of the information
from adjacent cells. This procedure is just adding an anti-diffusion term to the N scheme to
make it LP. Thus the two-node updates in Eqs. (19) turn into

S2u2← S2u2−1t

[
82−982− ŜT

3

]
, S3u3← S3u3−1t

[
83+982− ŜT

3

]
, (20)

which can also be written as

S2u2←S2u2−1t

[
82(1−9(Q))− ŜT

3

]
, S3u3←S3u3−1t

[
83(1−9(1/Q))− ŜT

3

]
,

(21)

where the coefficents of82 and83 are the nonlinear distribution functionsβ2= 1−9(Q)
andβ3= 1−9(1/Q), where, for boundness, the limiter should satisfy 0≤9,9(Q)/Q≤ 1
for local positivity or 0≤9 ≤ 2 for global positivity. For instance, the minmod limiter
9(r )=max(0,min(r, 1))and Superbee limiter9(r )=max(0,max(min(2r,1),min(r, 2)))
are examples of such limiters which satisfy local and global positivity, respectively. The
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N scheme with limiters is called a nonlinear N scheme (or NN scheme) and the reader
is referred to Refs. [24, 26, 28] for detailed reviews of different distribution schemes.
On structured meshes, the spatial accuracy of the linear FS schemes is second order pro-
vided that the schemes include LP property. Even though the local truncation error for a
single triangle may not seem to converge to zero as the mesh is refined, the global con-
vergence and second order accuracy of the NN scheme (when all neighboring triangles are
considered) have been proved by Perthame [27]. In the finite volume or finite difference
schemes, the spatial second order accuracy requires information from neighboring cells. In
contrast, it is remarkable that the FS schemes produce results as good as those obtained
from such conventional schemes, although the operations are confined to only a single
cell [28].

The FS scheme explained here can be extended to the nonlinear advection case in which
the advection speed is approximated by some average and to the system of equations in
which the fluctuation is treated as a sum of linearized simple wave fluctuations. For the scalar
advection in 1D there is only one simple wave, moving forward or backward; however, in
2D, the orientation angle of the wave adds additional degree of freedoms. For the system
of equations the complexity is further increased due to the existence of several waves and
their possible propagation directions.

2.3. System of Equations

In this work, the conservative forms of MHD equations are integrated, although the
primitive forms of the equations are utilized to derive an eigensystem suitable for the FS
wave model MHD-A. A nonlinear system of 2D hyperbolic equations is given by the
conservative form

∂U
∂t
+ ∂F
∂x
+ ∂G
∂y
= S (22)

or by the quasi-linear form

∂U
∂t
+ (Âu, B̂u) · E∇U = S, (23)

where the matriceŝAu= ∂F
∂U and B̂u= ∂G

∂U are conservative flux jacobians which give rise
to a hyperbolic system provided that they have a real set of eigenvalues and a complete
set of right and left eigenvectors.U is the conservative state vector (including density, mo-
menta, magnetic field, and total energy, i.e.,U= [ρ, ρV,B, E]T , whereE= P/(γ − 1)+
1/2ρV2 + B2/8π , P is the pressure, andγ is the ratio of specific heats);F, G are flux
vectors, andS is the source vector (which may include the physical sources as well as the
curvature terms and divergence source as will be explained later).

In order to solve Eq. (22) numerically, integrate it over triangleT with areaÄT ,∫ ∫
T

Ut dÄ = 8T = −
∫ ∫

T

[
∂F
∂x
+ ∂G
∂y
− S
]
dÄ, (24)

or use Eq. (23) to obtain∫ ∫
T

Ut dÄ = 8T = −
∫ ∫

T
[ ÂuUx + B̂uUy − S] dÄ, (25)
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whereU is assumed to be stored at the vertices as in scalar case. Assume further thatU is
approximated by Eq. (2) so that, since it varies linearly, its gradient is constant overT . If, in
addition,Âu andB̂u had been linear inU, the above integration could have been performed
exactly and8T would have been equivalent to an explicit flux integral along the sides ofT .
Unfortunately, the conservative jacobians are not linear in the components ofU for both the
Euler and MHD equations, and the exact evaluation of Eq. (25) is not practical. Thus, the
FS scheme requires that a decision be made on the numerical calculation of the jacobians
since an incorrect calculation may lead to numerical waves propagating with wrong speed
or directions. As suggested by Roe [28] this problem can be overcome by using a parameter
state vector (Z) such thatF, G, andU are all quadratic, and the jacobiansAz= ∂F

∂Z , Bz= ∂G
∂Z ,

andUz= ∂U
∂Z are all linear in the components ofZ. If, in addition,Z is assumed to vary

linearly satisfying the same form as Eq. (2), the averageZ̄ from which the elements of
jacobians are obtained can easily be found from

Z̄ = (Z i + Z j + Zk)/3, (26)

wherei, j, k are the vertices of the triangle.
By construction, the conservative property of the linearized system requires that the

Rankine–Hugoniot (RH) conditions

E∇ · EF = [ Au(Z̄), Bu(Z̄)] · E∇U with EF = (F,G) (27)

are satisfied in both smooth and discontinuous parts of the flow. How this is satisfied by the
FS scheme is explained by using Gauss’s law in the homogeneous part of Eq. (24) to get

8H
T = −

∫ ∫
[ E∇ · EF] dÄ =

∮
0T

(F,G) · dEn, (28)

wheredEn is directed inside the triangles. In this case,8H
T can be written as

8H
T =

∫ ∫
∂ EF
∂Z

∂Z
∂U
· E∇U dÄ

= ÂzÛ−1
z ·

∫ ∫
E∇U dÄ =

ˆ
∂ EF
∂U
·
∮

UEn d` = Âz(Z̄)
3∑

i=1

Ui Eni . (29)

Now assume there exists a discontinuity in the solution and it propagates along a gradient
direction, sayEm, through a triangular mesh (as shown in Fig. 1e). In this case, the flux
integration around this triangle becomes

3∑
i=1

EFi · Eni = EF1 · En1+ EF2 · En2+ EF3 · En3 = EFB · En1+ EFA · (En2+ En3)

= ( EFB − EFA) · En1 = ( EFB − EFA) · Em; (30)

similarly, one can also write
∑

Ui Eni = (UB − UA) Em, so that the fluctuation in Eq. (28)
leads to the RH conditions along the discontinuity

(FB − FA) = Âu(Z̄)(UB −UA). (31)
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This linearization procedure is not unique and the appropriate choice of the parameter
vector should be based as much as possible on computational cost as well as on physical
motivation. For example, it was shown by Roe [28] that the following parameter vector
gives rise to desired linearity inAz, Bz, andUz (for the 2D Euler system)

Z = [
√
ρ,
√
ρu,
√
ρv,
√
ρH ]T , (32)

whereH = (E+ P)/ρ is the enthalpy. Using such a parameter vector, the fluctuation can
be written as

8T =
∫ ∫ [

S−
(
∂F

∂Z
Zx + ∂G

∂Z
Zy

)
dÄ =

∫ ∫
[S− (Az, Bz) · E∇Z] dÄ

= [Ŝ− (Âz, B̂z) · ˆE∇Z]ÄT =
[
Ŝ− (ÂzÛ−1

z , B̂zÛ−1
z

) · ˆE∇U
]
ÄT

= [Ŝ− (Âu(Z̄), B̂u(Z̄)) · ˆE∇U]ÄT , (33)

where, for example,

Âz = 1

ÄT

∫ ∫
Az(Z) dÄ =

3∑
i=1

Az(Zi ) = Az(Z̄) and Ŝ= 1

Ät

∫ ∫
S(Z) dÄ (34)

and∇̂Z is calculated from the analogue of Eq. (5).
Using the explicit time discretization as in the scalar case, the conservative update ofU,

located at vertex̀, becomes

Un+1
` = Un

` −
1tn

Ä`

∑
T

[∑
k

βT
`,k8

k
T −

ŜT (Z̄)

3

]
ÄT , (35)

where8k
T is the conservative fluctuation associated withkth linearized wave andβT

`,k is the
distribution function, i.e., the fraction of the fluctuation sent to vertex` by this wave.

In this work, the time evolution is computed with the second order Runge–Kutta method
which was proved to be positive [31]. This scheme is given by

U∗` = Un
` +1tnRes

[
Un
`

]
(36)

Un+1
` = 1

2
Un
` +

1

2

(
U∗` +1tn Res[U∗` ]

)
,

where Res [Un
` ]=−

∑
T 8

n
T/Ä` is called the residual. This scheme is conservative and it

leads to overall second order accuracy provided that the local accuracy is at least of second
order (which is the fact satisfied by NN scheme).

2.4. FS Wave Models

In the FS scheme, the total fluctuation is decomposed into scalar components (φk
T ) and

then distributed independently to the nodes ofT in an upwind manner. This procedure is
carried out by means of a wave model in which the waves arising from the normal jacobian
(such as given in Eq. (15)) satisfy certain properties. The derivation of a wave model is
easier when the state for the primitive form of MHD equations (i.e.,W= [ρ,V,B,P ]T ) is
used since the eigensystem of its flux jacobian is less complicated and the eigensystem of
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the conservative form can easily be obtained by using the state jacobianÛw = ∂U/∂W and
its inverse. It must be noted again that it is the average parameter vector,Z̄, from which the
components of jacobians are evaluated. The quasi-linear form of the system of equations in
terms of so-called primitive variables can be obtained by premultiplying Eq. (23) byU−1

w ,

∂W
∂t
+ Aw

∂W
∂x
+ Bw

∂W
∂y
= Sw, (37)

whereSw =U−1
w S and Aw =U−1

w AuUw , Bw =U−1
w BuUw. In this 2D case, the matrices

Aw andBw do not commute, and the characteristic lines for unsteady equations cannot be
defined explicitly unless these matrices are linearized and the residual (or fluctuation) is
expressed as a sum of simple wave solutions, as Roe suggested for Euler equations [23].

Regardless of the fact that the sources affect the solution, one must integrate the homoge-
neous part of the equations in conservative form. After the wave model is constructed, the
conservative integration is easily established by converting the primitive form of equations
into a conservative form by means ofU−1

w andUw (i.e.,UwWt =Ut ,UwAwU−1
w = Au). To

show how this is done and how an FS-wave model is derived, the homogeneous part of
Eq. (37) is first linearized as

Wt + [ Âw(Z̄), B̂w(Z̄)] · E∇W = 0 (38)

and then the fluctuation for the primitive form,8w =−(Âw, B̂w) · E∇W, is treated as the
sum of linearized simple wave solutions. Since the solutions of hyperbolic equations dis-
play a wavelike character, letW=W(ξ), whereξ = Ex · Enθ − λθ t defines the wave front
propagating alongEnθ = (cosθ, sinθ)with a speed ofλθ . In this case, the time rate ofW and
its gradient across the wave front will be given byWt =−λθ dW

dξ and dW
dξ Enθ , respectively.

Plugging these into Eq. (38) will then lead to

[−λθ + (Âw, B̂w) · Enθ ] dW = 0, (39)

which shows thatλθ is an eigenvalue anddW is the corresponding eigenvector of the matrix
An= (Âw, B̂w) · Enθ . Therefore, as long asdW 6= 0 across the wave front, its gradient (E∇W)
can be projected onto the right eigenvectors of(Aw)n. In that case, the flux change across
the discontinuity will be proportional to the change in the conservative state by means of
the RH conditions. The resulting eigenvalue problem is then defined as

An Rw = 3Rw, (40)

whereAn= Âw cosθ + B̂w sinθ is the so-called 2D primitive jacobian matrix,3= diag(λ1,

λ2, . . . , λN) are its eigenvalues, andRw is the column matrix of its right eigenvectors (of
which thekth component leads to the conservative one through the relationr k

u =Uwr k
w).

These results show that the gradientE∇W (which can be obtained from∂W/∂Z E∇Z) can
be written as a superposition ofN discrete waves summed overall possible directions
(θ = 0, . . . ,2π ),

∇W =
2π∑
θ=0

N∑
k=1

αkr k
wEnθk or (Wx,Wy) =

2π∑
θ=0

N∑
k=1

αkr k
w(cosθk, sinθk), (41)
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whereαk corresponds to the discretestrengthof the wave andθk represents its direction,
which is allowed to differ for each wave. One of the simplest models of the form given by
Eq. (41) is obtained from the basic identity [30]

∇W sin(θ2− θ1) = −
(Esθ2 · E∇W

)Enθ1 +
(Esθ1 · E∇W

)Enθ2, (42)

whereEsθi satisfiesEsθi · Enθi = 0. Denotingi th left and right eigenvectors of a primitive system
asrθi and`θi (with r m

θi
`n
θi
= δmn) one can obtain a wave model by projecting each term of

the right-hand side of Eq. (42) ontorθ1 andrθ2:

∇W =
N1∑

k=1

αk
1r k
w1
Enθ1 +

N2∑
k=1

αk
2r k
w2
Enθ2, N1+ N2 = N (43)

αk
θ1
= − 1

sin(θ2− θ1)
Esθ2 · `k

θ1
E∇W, αk

θ2
= 1

sin(θ2− θ1)
Esθ1 · `k

θ2
E∇W. (44)

This decomposition can be interpreted as a mesh-independent directional splitting scheme.
For example, whenθ1= 0 andθ2=π/2 the discretex andy derivatives are treated indepen-
dently regardless of the underlying grid [32]. In model MHD-A,θ1= θ andθ2= θ +π/2
were taken, as these were proved to have produced excellent results in several FS-wave
models for Euler systems [26, 28, 32].

It is expected that the gradientE∇W may lead to inconsistencies whenever the spatial
gradients are large. For instance, the spurious pressures may not be able to be balanced with
the velocity gradients for shear flows in Euler systems [23]. In addition, the fact that the
propagation angles are dependent on the gradients will lead to spurious oscillations (slowing
the convergence) whenever the gradients are negligible. Of course, the stagnation points
will always cause problems if no preconditioning or implicit time stepping techniques are
utilized. Most of these issues have been investigated extensively for the Euler equations;
however, the behaviour of the incompressible MHD equations and the flow behaviour near
the stagnation points need further investigation. Some of these issues are currently being
investigated by the author.

The decomposition of∇W can be transformed to∇U using∇U=Uw∇W. In this case,
the conservative state and flux gradients become

E∇U =
∑

k

αkr k
uEnk
θ ,

E∇F = (Âu)n E∇U =
∑

k

(λk)nαkr k
u, (45)

wherer k
u is thekth right eigenvector of(Âu)n obtained fromr k

w by r k
u =Uwr k

w. Utilizing
these gradients in Eq. (33) then leads to the conservative fluctuation

8T =
[

Ŝ(Z̄)−
∑

k

(λk)nαkr k
u

]
ÄT (46)

so that Eq. (35) becomes

Un+1
` = Un

` −
1tn

Ä`

∑
T

[∑
k

βT
`,k(λk)nαkr k

u −
Ŝ(Z̄)

3

]
ÄT , (47)

whereβT
`,k is the fraction of8T in T (see Eq. (35)) sent to vertex` by the wave moving in

the directionEnk
θ .
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3. MHD-A: THE FS WAVE MODEL FOR MHD EQUATIONS

The ideal MHD describes the macroscopic behaviour of the plasma interacting with
external and internal fields and assumes that the conditions

λ

L
¿ 1,

ε

Tσ
¿ 1,

V

c
¿ 1, (48)

hold, whereρ,V, T , andL are, respectively, the characteristic density, speed, time, and
length scales for the problem;c is the speed of light; andσ andε are the conductivity and
dielectric constant of the fluid. With these assumptions, the ideal MHD equations are given
by the following conservative form with a divergence source [1, 9, 10],

∂

∂t


ρ

ρ EV
EB
E

+ E∇ ·


ρ EV
ρ EV EV + P? − EB EB

4π

EV EB− EB EV
(E + P?) EV − EB

4π (
EB · EV)

 = −


0
B
4π

V
B ·V
4π

 E∇ · B, (49)

whereP?= P+ B2/8π is the total pressure. Note that the divergence source is not a con-
sequence of the wave model developed here and its existence would not make a physical
difference as∇ · B should be maintained as zero. It must be noted that in the test problems
presented in this paper, it was observed that the divergence source had only minor effects on
the solution. Thus, it was not considered during the numerical iterations. The stabilization
due to the divergence condition was achieved only by using the magnetic monopole wave.
The eigenvalues and eigenvectors associated with the flux jacobian of these eight conserva-
tion laws are well known (see Jeffrey and Tanuiti [33]), and they correspond to one entropy
wave travelling with speedVn; two Alfven waves travelling with speedVn ± uA; and four
magnetoacoustic waves travelling with speedsVn ± us andVn ± u f , whereuA, us, andu f

are Alfven, slow, and fast magnetoacoustic speeds, respectively,

u2
T =

B2
T

4πρ
, u2

A =
B2

n

4πρ
,

us/ f =
[

1

2

[
a2+ u2

A + u2
T ∓

[(
a2+ u2

A + u2
T

)2− 4a2u2
A

]1/2]]1/2

, (50)

whereB2
T = B2− B2

n is the tangential magnetic field. In dimensional splitting approach,Vn

andBn should be considered asx or y components of the velocity and magnetic field.
As stated earlier, several Riemann-type upwind schemes based on a seven-wave system

(with zero divergence source) have been developed [6–8, 16]. In this work, yet another
approach that was first introduced by Aslan [1], then succesfully used by Powell [14, 15]
and Gombasiet al.[21], will be used. In this approach, Eq. (49) is first reduced to its primitive
form by means ofUw andU−1

w and then the eigensystem of its flux jacobian is obtained. By
taking the divergence source into account, it can be shown that the flux jacobian includes the
original seven waves mentioned above plus another (numerical monopole) wave moving
with the magnetoacoustic waves. It will be shown later that the strength of this wave is just
the divergence of a magnetic field and it creates dissipation only in the neighborhood of
nonzero divergence arising from the discretization errors in the magnetic field.
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It must be noted here that the magnetic monopole wave and divergence source cannot be
separated and should be employed together in order for the conservative form to be consistent
with the nonconservative form of MHD equations; although the effects of divergence source
is negligible.

The origin of the magnetic monopole wave and its stabilization effects can be described
as follows: consider a fluid particle moving on a magnetic field line with a velocityv. In this
case, the total change of its displacement∂` will be given byD∂`/Dt = (∂` · ∇)v. When
the equation of continuity and Faraday’s law of ideal MHD equations (without divergence
source) are combined one obtainsD(B/ρ)/Dt = (B/ρ · ∇)v+ v/ρ∇ · B. Comparing the
total changes of∂` andB/ρ one sees that, provided they are parallel initially, these vectors
will remain parallel only if the second term on the right side ofD(B/ρ)/Dt vanishes.
Otherwise, the fluid particle may cut lines of magnetic force contradicting the ideal MHD
limit (i.e., the conditionσ→ 0). As a result, the magnetic flux around the particle is not
conserved and a spurious magnetic monopole is created. This phenomenon justifies why
Faraday’s law should include a source term related to the divergence of magnetic field to
eliminate numerical magnetic monopoles (see Jackson [20]).

In order to understand how the divergence source arises from the modification of the
flux jacobian (Au= ∂F/∂U ), one observes that the 1D systemUt + Fx =Ut + AuUx = 0
can be replaced byUt + ÃuUx = Sdiv, whereSdiv= (Ãu − Au)Ux is the divergence source
(appearing on the right side of Eq. (49)). Note that this procedure does not modify the
original seven-wave structure but introduces a numerical magnetic monopole wave to create
extra dissipation to eliminate the noncommutativity of the numerical divergence and curl
operators. With this modification, the primitive jacobianAw with a seven-wave structure
turns intoÃw with an eight-wave structure

Aw =



Vx ρ 0 0 0 0 0 0

0 Vx 0 0 −bx by bz 1
ρ

0 0 Vx 0 −by −bx 0 0

0 0 0 Vx −bz 0 −bx 0

0 0 0 0 0 0 0 0

0 By −Bx 0 −Vy Vx 0 0

0 Bz 0 −Bx −Vz 0 Vx 0

0 γ P 0 0 V B 0 0 Vx


,

Ãw =



Vx ρ 0 0 0 0 0 0

0 Vx 0 0 0 by bz 1
ρ

0 0 Vx 0 0 −bx 0 0

0 0 0 Vx 0 0 −bx 0

0 0 0 0 Vx 0 0 0

0 By −Bx 0 0 Vx 0 0

0 Bz 0 −Bx 0 0 Vx 0

0 γ P 0 0 0 0 0 Vx


(51)

(wherebx = Bx/4πρ, etc., andV B= (γ −1)(V ·B)/4π ) producingSwdiv = (Ãw−Aw)Wx.
It was shown by Powell [14] that the eight-wave system with the magnetic monopole wave
has the desirable property of reverting to the seven-wave system in 1D since the strength
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of the divergence wave vanishes in 1D (i.e.,Bx = const.). It must be noted here that the
modified jacobianÃu is not the jacobian of any flux; therefore, this idea works better with
fluctuation splitting schemes in which no fluxes but only the jacobians are utilized.

Although the magnetic monopole wave is not a real MHD wave and the existence of
the divergence source leads to a slightly nonconservative form, their magnitudes are very
small numerically. It is noted that although the scheme described here maintains∇ · B= 0
to truncation errors, these errors increase toO(1) at discontinuities. Utilizing the magnetic
monopole wave and divergence source can mostly solve this problem but cannot totally
eliminate it. This is due to the numerical resistivity created by the dissipation. An explanation
of this was given by Falleet al. [34].

In the FS scheme described here, the primitive form of planar MHD equations (where
∂/∂z= 0, Bz,Vz= 0) in cartesian coordinates is considered. As stated previously, the first
step in deriving an FS-wave model is to obtain, analytically, the eigensystem of a two-
dimensional jacobian matrix,An= Ãw cosθ + B̃w sinθ , and then to project the gradients,
∇W, onto its right eigenvectors. In the FS scheme, the modified matrixÃw, given on the
right of Eq. (51), and its counterpartB̃w are used to getAn,

An =



Vn ρ cosθ ρ sinθ 0 0 0

0 Vn 0 −bysinθ bycosθ cosθ/ρ

0 0 Vn bx sinθ −bx cosθ sinθ/ρ

0 −By sinθ Bx sinθ Vn 0 0

0 By cosθ −Bx cosθ 0 Vn 0

0 ρa2 cosθ ρa2 sinθ 0 0 Vn


, (52)

whereVn=Vx cosθ +Vy sinθ is the normal speed in the direction ofnθ anda=√γ P/ρ
is the sound speed. Since this matrix defines the planar MHD case, its eigensystem does
not include Alfven waves explicitly, although the fast and slow waves do exist and they
include a contribution from the Alfven speed. The eigenvalues ofAn are then given by
Vn− u f ,Vn− us,Vn,Vn,Vn+ us,Vn+ u f , where the only difference from the original set
is the magnetic monopole wave associated by the eigenvalue ofVn (see Eqs. (50)). The
straightforward algebra carried out forAn leads to the following column matrix of right
eigenvectors and row matrix of left eigenvectors (normalized withl i r j = δi, j ),

Rw =



1 0 ρ ρ ρ ρ

0 0 −r2s r2s −r2 f r2 f

0 0 r3s −r3s r3 f −r3 f

0 cosθ r4s sinθ r4s sinθ r4 f sinθ r4 f sinθ

0 sinθ −r4s cosθ −r4s cosθ −r4 f cosθ −r4 f cosθ

0 0 ρa2 ρa2 ρa2 ρa2


, (53)

Lw =



1 0 0 0 0 −1/a2

0 0 0 cosθ sinθ 0

0 −l3 f −l2 f X sinθ −X cosθ −l4 f

0 l3 f l2 f X sinθ −X cosθ −l4 f

0 l3s l2s −X sinθ X cosθ l4s

0 −l3s −l2s −X sinθ X cosθ l4s


, (54)
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where

r2s/ f = [Byus/ f −
√

4πρ auf/s Sign(Bn) sinθ ]/BT (55)

r3s/ f = [Bxus/ f −
√

4πρ auf/s Sign(Bn) cosθ ]/BT (56)

r4s/ f = 4πρ
(
u2

f/s − u2
B

)/
BT (57)

l2s/ f = [Sign(Bn By)uyus/ f − auf/s sinθ ]/2a
(
u2

f − u2
s

)
(58)

l3s/ f = [Sign(Bn Bx)uxus/ f − auf/s cosθ ]/2a
(
u2

f − u2
s

)
(59)

l4s/ f = α f/s/2ρa2, (60)

with

uB = |B|√
4πρ

, ux,y = |Bx,y|√
4πρ

, α f/s =
u2

f/s − u2
B

u2
f − u2

s

, X = BT

8πρ
(
u2

f − u2
s

) ,
(61)

whereBT = By cosθ − Bx sinθ is the tangential magnetic field. Note that the angleθ has
not been specified yet and how it can be obtained as a function of field gradients will be
presented later.

The MHD equations are nonstrictly hyperbolic since there are some points at which the
wave ordering required in strictly hyperbolic systems is destroyed and two or more wave
speeds may coincide. In the FS wave model MHD-A, the slow and entropy eigenvectors
become degenerate in two limits: whenBT = 0 and whenB = 0. The first limit is possible in
several cases (i.e., whenn θ is along the magnetic stream lines, whenBx ≈ By andθ ≈π/4,
and when|By|¿1 andθ ≈ 0 or when|Bx|¿1 andθ ≈π/2). The second limit describes
the Euler case (i.e.,B= 0), and this eigensystem should reduce to that of the Euler system in
this limit. This cannot happen automatically in perpendicular MHD since the Alfven waves
do not exist and the slow waves cannot be combined with them to result in an Eulerian
shear wave (see [17] to understand how this works out). Thus, in this limit a switching is
required in coding of MHD-A. The singularities in Eqs. (55)–(57), for the caseBT = 0, can
be removed by using the identities

usu f = auA, u2
Ta2 = (u2− u2

B

)
(u2− a2), (62)

whereu can beus or u f . Defining also the parameters

βx,y = Bx,y + ε
BT +

√
2ε
, βsign= SignBn + ε

BT +
√

2ε
, α f T = α f + ε

BT +
√

2ε
, (63)

one can see that the nonsingular forms ofr2s/ f , r3s/ f , andr4s/ f can be defined as

r2s = βyus − βsign

√
4πρ auf sinθ, r2 f =

[
a2 cosθ + βy

(
u2

f − a2
)]/

u f (64)

r3s = −βxus + βsign

√
4πρ auf cosθ, r3 f =

[
a2 sinθ − βx

(
u2

f − a2
)]/

u f (65)

r4s = −4πρα f T
(
u2

f − u2
s

)
, r4 f =

[(
u2

f − a2
)
(βx Bx + βy By)+ BTa2

]/
u2

f , (66)

whereε is an arbitrary small number.
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Note that finding a parameter vector,Z, such that the jacobiansAz, Bz, andUz are all
linear in its components is rather difficult for MHD; however, this does not mean that it is
impossible. For instance, even though Brio and Wu [6] had concluded that Roe’s averaging
that satisfies RH conditions did not exist for MHD equations for an arbitraryγ , it was later
shown by Aslan [11] that Roe’s averaging indeed existed for any value ofγ . Despite the fact
that no such parameter vector exists for 2D MHD equations as of today, the results in [11]
led to the idea that the following parameter vector can be used in FS-wave models for MHD,

Z =
[√
ρ,
√
ρVx,
√
ρVy,

Bx√
ρ
,

By√
ρ
,
√
ρH∗

]T

, (67)

whereH ∗ = [E + P∗]/ρ is the total enthalpy. With this choice, most of the terms in the
jacobiansAz, Bz become linear in the components ofZ except that the terms related to the
momentum and hence energy fluxes include some second order terms which usually intro-
duce negligible errors. It was found by numerical experiments that a careful design of such
a parameter vector is important for better resolution of the discontinuities for FS methods,
although the parameter vector given by Eq. (67) produces rather impressive results for the
model MHD-A, as will be shown in the next section.

As was shown in Section 2.4, the solution to the system of equations can be interpreted
as the superposition of a discrete number of simple waves of which strengths and directions
have not been specified yet. As discussed earlier, this so-called pattern recognition step is
carried out by the projection of a two-dimensional state gradient onto the eigenvectors so
that the correct discontinuity capturing property will have been embedded in the scheme. In
1D, consistent analysis of local gradient with the superposition of simple waves shows that
one needs 7 wave strengths to match with 7 field gradients in MHD (note thatBx = const.
in 1D). Although the eigensystem of the flux jacobian indicates the existence of an entropy
and magnetic monopole waves and four magnetoacoustic waves propagating (possibly) at
different angles, model MHD-A includes four additional magnetoacoustic waves but only
two angles, resulting in 12 parameters. Note that the space gradient has 6 components in
x and 6 components iny direction, giving 12 equations. Thus the number of gradients can
easily be matched with the 10-wave structure. As was stated by Roe [23], who developed
Model-A for Euler equations, it was possible to consider more waves and fix some relations
between them to balance with the right number of free parameters. The reason behind the
choice of a set is its capability to resolve complex flow patterns such as intersecting shocks
and contacts. One should always remember that wave models based on a rather limited
number of waves may have problems resolving these flows, while a large number of waves
may do better but each of them brings its own dissipation into the scheme. Additionally,
when more waves than necessary are used, the balance among these waves will be the only
mechanism which can drive the residual to zero as steady state is approached (instead of
having velocities and strengths vanish [24]). Finally, the equations to solve for the angles
and strengths become too complicated unless additional waves are utilized.

In the FS wave model presented here, both slow and fast magnetoacoustic parts of the
total fluctuation are represented by four plane waves travelling orthogonally to one another.
These include the fast waves labeled 5, 6, 9, 10 and the slow waves labeled 3, 4, 7, 8 in Fig. 2.
The eight strengths (four slow and four fast) and an independent direction,θ , contribute nine
parameters to the model. When the monopole wave strength, the entropy wave strength, and
its direction (nθe) are introduced as three more parameters, one can match the number of
unknowns with the number of local gradients. As discussed earlier (see Eqs. (42, 43)), the
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FIG. 2. The locations and directions of possible wave fronts existing in FS-wave model MHD-A for the case
|Vn|< u f . The waves labeled 1, 2 are entropy and numerical magnetic monopole waves; and those labeled 5, 6, 9,
10 are fast waves, and those labeled 3, 4, 7, 8 are slow waves.

existence of orthogonal magnetoacoustic waves moving withθ +π/2 has useful properties
such as introducing additional dissipation and representing the magnetoacoustic part of the
flow by a couple of four plane wave sets, each representing one circular wave. It also seems
that the assumption of orthogonality of the magnetoacoustic waves is crucial in producing
equations for which a unique solution is possible.

In order to understand the 10-wave structure utilized in model MHD-A, see Fig. 2 for the
positions and the directions of possible wave fronts after a time1t (where all wave fronts
were considered to have been located at the origin att = 0). When all the contributions from
these waves are considered, the gradient ofW is written as

E∇W = α1
er 1

e Enθe + α2
divr

2
divEnθ +

6∑
k=3

αk
θ r

k
θ Enθ +

10∑
k=7

αk
θ+π/2r

k
θ+π/2Enθ+π/2, (68)

from which the unknown strengths can be found as follows by means of Eq. (43),

α1
e = Ene ·

(
l 1
θe
· E∇W

)
, α2

div = Enθ ·
(
l 2
θ · E∇W

)
(69)

αk
θ = Enθ ·

(
l k
θ
E∇W

)
, k = 3, . . . ,6, αk

θ+π/2 = Enθ+π/2 ·
(
l k
θ+π/2 E∇W

)
, k = 7, . . . ,10,

(70)

provided that the propagation angles (θ andθe) are known. Note that this form is allowed
due to Eq. (42) since the anglesEnθ1 = Enθ andEnθ2 = Enθ +π/2 satisfy the relationEnθ1 · Enθ2 = 0.
In this case, the gradients in the direction ofEnθ and those in perpendicular directions will
be treated independently.

The propagation angle and the strength of entropy wave can easily be found by multiplying
the first row of (54) byE∇W and projecting it ontoEnθe (see Eq. (69)). This results in

αe = (cosθe, sinθe)[(1, 0, 0, 0, 0,−1/a2)



ρx ρy

(Vx)x (Vx)y

(Vy)x (Vy)y

(Bx)x (Bx)y

(By)x (By)y

Px Py


], (71)
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which turns intoαe = cosθe(ρx − Px/a2)+ sinθe(ρy − Py/a2), giving

tanθe =
(
ρy − Py/a2

)(
ρx − Px/a2

) , αe =
√(

ρx − Px/a2
)2+ (ρy − Py/a2

)2
. (72)

Note that, not surprisingly, this is the same result that is obtained by any FS-wave model
for the Euler equations. How the magnetic monopole wave strength and the angleθ are
obtained can easily be seen by writing Eqs. (68) explicitly for the magnetic field gradients

∂Bx

∂x
= αdiv cos2 θ + [r4s(α

−
s + α+s )+ r4 f (α

−
f + α+f )] sinθ cosθ

− [r ′4s

(
α−s90
+ α+s90

)+ r ′4 f

(
α−f90
+ α+f90

)]
sinθ cosθ (73)

∂Bx

∂y
= αdiv sinθ cosθ + [r4s(α

−
s + α+s )+ r4 f (α

−
f + α+f )] sin2 θ

+ [r ′4s

(
α−s90
+ α+s90

)+ r ′4 f

(
α−f90
+ α+f90

)]
cos2 θ (74)

∂By

∂x
= αdiv sinθ cosθ − [r4s(α

−
s + α+s )+ r4 f (α

−
f + α+f )] cos2 θ

− [r ′4s

(
α−s90
+ α+s90

)+ r ′4 f

(
α−f90
+ α+f90

)]
sin2 θ (75)

∂By

∂y
= αdiv sin2 θ − [r4s(α

−
s + α+s )+ r4 f (α

−
f + α+f )] sinθ cosθ

+ [r ′4s

(
α−s90
+ α+s90

)+ r ′4 f

(
α−f90
+ α+f90

)]
sinθ cosθ, (76)

where the subscript 90 denotes the orthogonal waves andr ′4s, f can be obtained from
Eqs. (66) by replacingθ with θ + π/2. From Eqs. (73) and (76) one immediately has

αdiv =
(
∂Bx

∂x
+ ∂By

∂y

)
= E∇ · B, (77)

which shows that the strength of the numerical magnetic monopole wave equals the diver-
gence of the magnetic field as anticipated earlier. Obviously, this wave has no action when
the divergence condition is exactly satisfied. The effect of this wave becomes significant
only in the regions where spurious magnetic monopoles are created due to the discretization
errors in the divergence condition (i.e., near discontinuities). In this case, the dissipation
introduced by magnetic monopole wave alters the evolution of magnetic field in such a
way that the discretization errors are reduced significantly and the divergence condition is
satisfied to within the accuracy of the scheme. This observation happens to be supported
by numerical results that will be presented in the next section.

Using the trigonometric identities, Eqs. (73)–(76) lead to the relations

[(Bx)x − (By)y] cos 2θ = αdiv cos2 2θ + [r4s(α
−
s + α+s )+ r4 f (α

−
f + α+f )

− r ′4s

(
α−s90
+ α+s90

)− r ′4 f

(
α−f90
+ α+f90

)]
sin 2θ cos 2θ (78)

[(Bx)y + (By)x] sin 2θ = αdiv sin2 2θ − [r4s(α
−
s + α+s )+ r4 f (α

−
f + α+f )

− r ′4s

(
α−s90
+ α+s90

)− r ′4 f

(
α−f90
+ α+f90

)]
sin 2θ cos 2θ, (79)
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from which one obtains

[(Bx)x − (By)y] cos 2θ + [(Bx)y + (By)x] sin 2θ = αdiv, (80)

resulting in

tan 2θ = (Bx)y + (By)x

(Bx)x − (By)y
. (81)

This result is independent of the existence of magnetic monopole wave and is rather in-
teresting and physically meaningful since it can be derived from another perspective as
well. If the magnetic field (including gradients) at two infinitesimally near locations,r 0 and
r = r 0+ δr (wherer 0 = (ε cosψ, ε sinψ)), are considered, one has

B(r) = B0(r 0)+ ∂B
∂x
δx+ ∂B

∂y
δy+O(2), (82)

whereB0= (B0 cosψ, B0 sinψ)andδr = (δx, δy)= δε(cosψ, sinψ). In this case, the mag-
netic field can be written as

B = [(B0+ (Bx)xδε) cosψ + (Bx)yδε sinψ, (B0+ (By)yδε) sinψ + (By)xδε cosψ ]
(83)

or

B2 = B2
0 + 2B0

[
(Bx)x cos2ψ + (By)y sin2ψ + ((Bx)y + (By)x) sinψ cosψ

]
δε (84)

up to first order inδε. Notice that the gradient in the magnetic field has caused deformation
in the original configuration. The principal axis of this deformed ellipse (shown in Fig. 2)
is represented byd B

dψ = 0, resulting in

[(By)y − (Bx)x] sin 2ψ + [(Bx)y + (By)x] cos 2ψ = 0, (85)

which leads to tan 2ψ = ((Bx)y + (By)x)/((Bx)x − (By)y), the same result as Eq. (84).
Note that this angle also cancels the second term on the right-hand side of Eq. (84), re-
sulting in the conservation of the magnitude of the magnetic field. This result shows that
the magnetoacoustic waves produced by the FS-wave model MHD-A are aligned with the
directions of maximum and minimum magnetic-strain rates in the magnetofluid. This ob-
servation also justifies why orthogonal magnetoacoustic waves are considered in the wave
model.

The strengths of the slow and fast magnetoacoustic waves can be found from Eq. (70)
and are given, respectively, by

α
3/4
θ = ∓l θ3 f

(
cosθ

∂Vx

∂x
+ sinθ

∂Vx

∂y

)
∓ l θ2 f

(
cosθ

∂Vy

∂x
+ sinθ

∂Vy

∂y

)
(86)

α
5/6
θ = ±l θ3s

(
cosθ

∂Vx

∂x
+ sinθ

∂Vx

∂y

)
∓ l θ2s

(
cosθ

∂Vy

∂x
+ sinθ

∂Vy

∂y

)
− X

2

(
∂Bx

∂y
− ∂By

∂x

)
+ l θ4s

E∇P, (87)

where E∇P= cosθPx + sinθPy is the pressure gradient. Replacing the angleθ with θ +π/2
in Eq. (86) and (87) leads to the remaining strengthsα

7/8
θ+π/2 andα9/10

θ+90.
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Having the propagation angle of magnetoacoustic waves dependent only upon the mag-
netic field gradients is interesting. However, one should attempt to find the dependence of
these angles on the velocity gradients as well in order to be able to specify a nonsingular
limit of B→ 0. This requires the solution of nonlinear relations between the magnetic field
and velocity gradients. Even though this procedure is very complicated, without this, the
models such as MHD-A will perform poorly especially for the high beta flows, where the
magnetic field pressure (B2/8π ) is negligible in comparison with the scalar pressure,P.
This issue and the performance of the code at subsonic flows and at stagnation points are
currently being investigated by the author and will be the subject of subsequent papers.

With the results presented in this section, the derivation of FS-wave model MHD-A is
thus completed. In summary, the 2D algorithm is implemented as follows. At timetn+1,
where1t is calculated from CFL min(dx, dy)/[max(|V|)n + max(uf)

n] for eachT with
local nodes̀ = 1, 2, 3,

—get Z̄ and E∇Z from Eqs. (5) and (26) and obtainE∇W using∂W/∂Z to be used to
evaluate the anglesθe andθ from Eqs. (72) and (81);

—then for eachk evaluate the wave strengths using Eqs. (72), (77), (86), and (87) and
the wave speeds(λk) and right eigenvectors (r k

u) using Eqs. (50) and (53), respectively;
—then use Eq. (47) to update the nodes by upwinding with a procedure explained in

Eq. (20) depending on each flow parameter (kk = λk
x cosθ + λk

y sinθ ) and on distribution
coefficents,βT

`,k.
—After the procedure is repeated for eachk andT , the predictor part of Eq. (36) will

have been completed andU∗` will have been obtained;
—finally repeat all the above procedure to obtain the state at new time step,Un+1

` from
the corrector part of Eq. (36).

4. NUMERICAL RESULTS

4.1. Scalar Advection

The first test presented is the scalar nonlinear advection governed by Burger’s equation.
This test case was chosen to show the resolution property of the FS scheme for a shock
formation due to converging characteristics. In this problem,Eλ= (u, 1) was used (i.e., the
nonlinear problemut + uux + uy= 0 was solved), and the boundary values ofu on the left,
right, and lower boundaries were taken asu= 1.5,u=−0.5, andu= 1.5− 2x, respectively.
The problem was initialized withu= 0 and solved by the scheme described in Section 2.1 on
a 30× 30 square domain (x, y : [0, 1]) covered by triangles with right-running diagonals.
The numerical result obtained after the residual reduced to machine zero is depicted in
Fig. 3a. It is seen that the scalar FS scheme described in Section 2.1 (with Superbee limiter)
is capable of solving steady state nonlinear problems rather accurately, capturing the shock
over two or three cells without spreading.

The next test problem is the circular advection with nonuniform velocity:Eλ= (y,−x).
In this test problem, the left half of the lower boundary is kept atu= 0 if x<−0.65,u= 1
if −0.65< x<−0.35, andu= 0 if −0.35< x< 0 and the left and upper boundaries are
kept atu= 0. This problem was initialized as before and solved on the same grid (but
in this case withx : [−1 : 1]). The exact solution for this test problem is a discontinuous
advection (withu= 1 between two half circles). As seen from Fig. 3b, this is represented
very well by the numerical solution, and the discontinuity shows only a small amount of
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FIG. 3. The contours ofu obtained by scalar advection test cases (obtained on 30× 30 coarse grid): (a) non-
linear Burger’s problem; (b) circular discontinuous advection problem.

spreading during the transient stage. This shows that the distribution algorithm described
in Section 2.1 produces better results than those presented in [24].

4.2. Zachary’s Sonic Test Problem with Bx = 0

In order to check the performance of the model MHD-A in 1D limit, the strong sonic
problem introduced by Zacharyet al. [7] was solved on a highly elongated isotropic trian-
gular grids of different resolutions. As an initial condition, thex axis is divided into two
halves and the following states are defined on both sides (withγ = 5/3):

WL = [1, 0, 0, 0,
√

4π, 1000], WR= [0.125, 0, 0, 0,−
√

4π, 0.1].

With this choice of initial conditions, the strong pressure gradient and the initial discontinuity
in the tangential magnetic field gives ris to a left moving rarefaction wave and a right
moving contact discontinuity behind a fast shock. SinceBx = 0 and practically the 1D
problem is solved on a 2D mesh, the time evolutions ofρ and By have the same form
(i.e.,ρt + (Vxρ)x = 0 and(By)t + (Vx By)x = 0). Thus across shocks and rarefactions,By/ρ

should be constant. By using the numerical scheme summarized at the end of Section 3, this
problem was solved on isotropic grids with four different resolutions (100× 20, 200× 20,
400× 20, 800× 20), and resulting density andBy profiles att = 0.003 are depicted in
Fig. 4 along with the analytical solution as straight line. Although the contact discontinuity

FIG. 4. The density,By, profiles obtained on 100× 20, 200× 20, 400× 20, and 800× 20 grids att = 0.003.
The plots show the 1D feature of the solution along the center liney= 0.5 for Zachary’s sonic test problem. The
continuous line shows the analytical solution.
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is slightly smeared, it is seen that the solutions converge to the correct jump conditions
(the jumps inρ andBy are about 3.9 across the shock) as the grid resolution is increased.
Note that since the problem is practically 1D (i.e.,Bx = 0 and∂By/∂y= 0), the magnetic
monopole wave and divergence source have no effect on the solutions.

4.4. Author’s Contact Discontinuity Test

The next test problem is the MHD version of classical Mach= 2.9 flow in a rectangular
domain of [0, 4]× [0, 1] introduced by Aslan [13] and it is an excellent test case to show the
ability of magnetic monopole wave to get physically correct solutions, i.e., a 29◦ supersonic
shock reflecting from the lower boundary. The states to be used on the left and upper
boundaries are (withγ = 1.4)

WL = [1, 2.9, 0,
√
π, 0, 1/γ ], WU= [1.46, 2.717,−0.405, 2.424,−0.361, 1.223],

such that the RH conditions are satisfied across the shock as found in [13]. Note that the
only action performed on the lower boundary was to setVy to zero to accomplish reflection
and the states on the right boundary were simply untouched during iterations to make this
boundary outgoing. The problem was solved numerically on 120× 60 isotropic grid, and
the steady state gray scale images ofBy obtained without and with magnetic monopole
wave (the divergence source was not used) are shown in Fig. 5. As seen, without the
magnetic monopole wave (Fig. 5a) the magnetic field displays magnetic wells and spurious
oscillations in the region between the shocks and an unphysical discontinuity across the
reflected shock towards the right boundary. In contrast, the solution with the magnetic
monopole wave and divergence source (Fig. 5b) is excellent since the shock locations are
correct, shocks remain uniform and sharp before and after reflection, and no problems exist
at the outgoing boundary. These results show that the divergence source has only a minor
effect in eliminating problems due to divergence constraints and it is mainly the magnetic
monopole wave which stabilizes the scheme. It is noted that this is not the case for the finite
volume-type schemes, which require both the divergence source and magnetic monopole
wave for stabilization unless other stabilization methods are not utilized. Thus the method
derived here differs from those that were presented in [9, 13, 14].

4.5. Author’s Blast Wave Test

We now examine the blast wave test (introduced by Aslan [13]) in free space influenced by
arbitrarily directed magnetic field. The blast wave is driven by high pressure and high tem-
perature in a circular region of radius 0.2 within a square region (x : [−1 : 0], y : [0 : 1]). The

FIG. 5. The gray scale images ofBy obtained by the scheme described by Eq. (36) with and without magnetic
monopole wave.



460 NECDET ASLAN

FIG. 6. The contours ofBy obtained by the scheme described at the end of Section 3 for the blast wave test
without and with magnetic monopole wave and divergence source.

initial conditions are (withγ = 1.4)V= 0, Bx = 3, By= 1 andPin= 50, ρ in= 20,Pout= 1,
ρout= 1. Figure 6 shows the resultingBy contours, obtained on an 80× 80 isotropic grid
with the scheme described at the end of Section 3, with and without the magnetic monopole
wave att = 0.3. Again, the solution without the magnetic monopole wave (Fig. 6a) shows
nonphysical magnetic islands (due to a numerical magnetic monopole created by numerics)
near the upper left part of the expanding shock, correcting the comments given by Falleet al.
[34]. After a careful examination of physical variables near singular point, it was found that
the entropy and circulation grow exponentially during iterations, leading to the nonphysical
dynamics near this point. In most cases, this situation causes the codes to crash when this
phenomenon reaches intolerable levels. The solution with the magnetic monopole wave
(Fig. 6b) includes no such problems, thus showing the ability of the magnetic monopole
wave to eliminate nonphysical magnetic monopoles and hence nonphysical dynamics. The
results show that after the explosion, a rarefaction wave moves inwards and a contact dis-
continuity behind a strong shock move outwards. In addition, the existence of oblique
magnetic field disturbs the symmetry, resulting in stronger horizontal shock. These results
are similar to and as good as those obtained by a finite volume method on quadrilateral grids
(see [13]).

4.6. Orszag–Tang Vortex Test

For the last test problem, the evolution of the Orszag–Tang vortex system described by
Picone and Dahlburg [33] was considered. This problem simulates the MHD turbulence and
offers the investigation of quickly evolving compressible turbulence starting from simple
initial solutions. It is noted that the resistivity and viscosity used in [33] are totally determined
by the dissipation mechanism of the model MHD-A.

The initial conditions have a periodic structure and involvex points (where the fields
vanish) in both the velocity and magnetic field. Uniform initial density (ρ0) and pressure
(P0) based on an average Mach number (≡V/a) and plasma beta (=P/B2/8π ) were se-
lected, and periodic boundary conditions are assumed in bothx andy directions. Note that
one must be careful in applying these conditions since all possible updates at the bound-
ary points should be taken into account very carefully before advancing to the next time
level (for example, the node in one corner is affected by the cells adjacent to the other
corners). The initial fields are produced as follows. First, the average velocity and magnetic
fields (i.e.,V̄2

0 =
∑N

i=1[V2
x + V2

y ] and B̄2
0=

∑N
i=1[B2

x + B2
y]) are evaluated from the initial
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FIG. 7. Mach number contours obtained by the scheme described by Eq. (36) for the Orszag–Tang vortex test
with the magnetic monopole wave obtained on 40× 40 and 80× 80 mesh.

fields:

V = −sin(2πy)î + sin(2πx)ĵ, B = −
√

4π sin(2πy)î +
√

4π sin(4πx) ĵ ; (88)

thenρ0 and P0 are evaluated fromρ0= γ P0(M2/V̄2
0 ), P0=β/(B̄2

0/8π) to be used as the
initial values of the density and pressure. With this choice of initial conditions a wide variety
of initial conditions can be produced. In this paper, the caseβ = 10/3 andM = 1.0 was
examined on 40× 40 and 80× 80 isotropic triangular grids withx, y : [0, 1] andγ = 5/3.
The contours of local Mach number att = 0 andt = 1.5 obtained by the same procedure are
presented in Figs. 7a, and 7b and c respectively. As seen, the results show excellent symme-
try and are similar to those obtained by Dahlburg and Picone, who used physical resistivity
and viscosity. This suggests that the numerical dissipation built into the model presented
here provides a good representation of the physical diffusive processes. The results show
that the code is also capable of handling thex points where the flow is almost stationary or
the magnetic field is negligible. The runs at later times show that the accuracy is degraded at
subsonic part of flow (near center). This can be improved by using preconditioning, implicit
time stepping, or hyperbolic–elliptic splitting techniques.

During the simulations presented thus far, the behaviour ofE∇ · B was also monitored.
This term was calculated numerically from

ε=
(∑

mesh

| E∇ · B|
)(∑

mesh

|Bx|min+ |By|min

1xmax+1ymax

)−1

, (89)

as done by Evanset al.[32]. In particular, it was found in most of the tests that the numerical
magnetic monopole wave (with the divergence source) has the stabilization effects against
the discretization errors of the divergence condition although the problems are not eliminated
completely. This is clearly seen from Fig. 8 (obtained from the Orszag–Tang vortex test)
since the relative divergence error reduces almost linearly with the increased grid resolution
(i.e.,ε reduces approximately three times as the cell resolution is increased from 20× 20 to
80× 80). It is also seen that the divergence errors always reduce by the end of all iterations
(which are stopped att = 1.5). The curve at the top of Fig. 8 shows the increase in the
time rate of divergence error when the magnetic monopole wave and the divergence source
are not utilized. This phenomenon drives the creation of spurious magnetic monopoles,
resulting in nonphysical dynamics. These numerical results also support the need for the
numerical magnetic monopole wave in order to correctly update the magnetic field in such
a way that the∇ · B= 0 condition is satisfied to within the truncation errors in the solution.
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FIG. 8. The behaviour of the divergence error obtained with different grid resolutions for the Orszag–Tang
vortex test with and without the magnetic monopole wave.

It seems that, in solving MHD equations, the divergence source and magnetic monopole
wave can be efficiently utilized within the finite difference schemes (see [13–15]) with
quadrilateral cells and fluctuation splitting schemes with triangular cells [18], although the
divergence source occasionally introduces too small dissipations and it can be neglected for
most cases.

4.7. Behaviour of Model MHD-A on Unstructured Meshes

The effects of unstructured grid and grid distortion are investigated by performing the
author’s contact discontinuity test on coarse and fine unstructured meshes and on a severely
distorted mesh. The unstructured meshes were generated using the frontal Delaunay trian-
gulation method of Muller [37], by specifying equally spaced points on the boundaries of
the solution domain.

In order to compare the results of this test problem with the results obtained on un-
structured meshes, the former was solved on a coarse isotropic mesh. The resulting density
contour along with the isotropic mesh used and the time history of the maximum divergence
error are shown in Fig. 9.

FIG. 9. The behaviour of model MHD-A on a coarse isotropic structured mesh: (a) isotropic mesh structure;
(b) resulting density contour; (c) time history of maximum divergence error.
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FIG. 10. The behaviour of model MHD-A on a coarse and slightly distorted unstructured mesh: (a) mesh
structure; (b) resulting density contour; (c) time history of maximum divergence error.

Figure 10 shows the results obtained on a coarse and slightly distorted unstructured mesh
(including approximately the same number of nodes existing in the isotropic mesh shown
in Fig. 9). Comparing the resulting density contour with that of Fig. 9 one can see the
success of the method on unstructured meshes. In addition, the time history of maximum
divergence error is depicted in Fig. 10c. As seen, the divergence error reduces in time also
for this case, showing the ability of model MHD-A to work accurately on unstructured
meshes.

Figure 11 shows the results obtained on a severely distorted unstructured mesh. It is seen
that the scheme developed here also works reasonably well on highly distorted unstruc-
tured meshes. The divergence error also reduces in time, although the convergence takes
longer.

FIG. 11. The behaviour of model MHD-A on a severely distorted unstructured mesh for the author’s contact
discontinuity test: (a) mesh structure; (b) resulting density contour; (c) close-up illustrating the skewness of the
elements used; (d) time history of maximum divergence error.
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FIG. 12. The behaviour of model MHD-A on a fine unstructured mesh for the author’s contact discontinuity
test: (a) mesh structure; (b) resulting density contour; (c) time history of maximum divergence error.

In order to show the accuracy of the scheme on unstructured meshes, the same problem
was solved on a finer unstructured mesh. The mesh structure and the resulting density
contour along with the divergence error history are shown in Fig. 12. As seen, the result
is excellent since the resolution is increased and the maximum divergence error is reduced
considerably. All these results presented in this section show that the method presented in
this paper is able to maintain the planarity of a plane discontinuity on nonuniform (even
distorted) triangular meshes.

5. CONCLUSION

In this paper, a new fluctuation splitting wave model, MHD-A, for the solutions of planar
MHD equations was presented. The model has a 10-wave structure consisting of an entropy.
A new numerical magnetic monopole wave, and a pair of slow and fast magnetoacoustic
waves and their counterparts moving in perpendicular direction. It was found that the
magnetic monopole wave has a strength equal to the divergence of the magnetic field and
that the magnetoacoustic waves propagate in the directions of maximum and minimum
magnetic strain rates. The fluctuation splitting scheme, which includes the wave model
MHD-A, was described in detail, and some numerical results for the scalar case and for
MHD equations (Zachary’s sonic test, author’s contact and blast wave test problems, and
Orszag–Tang vortex problem) were presented. The results show that the FS wave model
MHD-A is a robust and efficient model for the solutions of planar MHD equations with
arbitrarily oriented magnetic fields. No divergence cleaning and similar modifications are
necessary to preserve the divergence free condition on the magnetic field. In addition, the
method presented is able to maintain the planarity of a plane discontinuity on nonuniform
triangular meshes.
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